Latissimus dorsi transfer for massive posterosuperior rotator cuff tears: what affects the postoperative outcome?

Mohamed Moursy, MDa,b,*, Jonas Schmalzl, MDc, Aditya S. Kadavkolan, MDa,d, Niko Bartels, MDb, Lars-Johannes Lehmann, MDa,c

aOrthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
bDepartment of Traumatology and Orthopaedic Surgery, University Hospital Salzburg, Salzburg, Austria
cDepartment of Traumatology and Hand Surgery, St. Vincentius Clinic, Teaching Hospital Albert-Ludwigs-University Freiburg, Karlsruhe, Germany
dDr. LH Hiranandani Hospital, Mumbai, India

\textbf{Background:} The management of irreparable posterosuperior rotator cuff tears (IPSRCTs) in young active individuals is still a challenge. The aim of this study was to evaluate the influence of sex, surgical technique, previous surgical procedures, tear genesis, and presence of a preoperative external rotation lag sign on the functional outcome after latissimus dorsi transfer (LDT) for IPSRCTs.

\textbf{Methods:} Retrospectively, all patients with IPSRCTs treated with LDT during a 10-year period were followed up. Preoperative evaluation included the visual analog scale (VAS) score, range of motion, and the Constant score (CS). Postoperatively, the VAS score, range of motion, CS, American Shoulder and Elbow Surgeons score, and Subjective Shoulder Value were recorded. Preoperative and postoperative radiologic evaluation was performed using the Hamada-Fukuda classification and the acromiohumeral interval.

\textbf{Results:} In total, 67 of 79 patients (85%), with a mean age of 63 years, were available for follow-up at 54 ± 28 months. The CS improved from 24 ± 6 points preoperatively to 68 ± 17 points at follow-up ($P < .001$). Active flexion increased from 83° ± 47° to 144° ± 35°; abduction, from 69° ± 33° to 134° ± 42°; and external rotation, from 24° ± 18° to 35° ± 21°. Postoperatively, the Subjective Shoulder Value was 69% ± 19% and the American Shoulder and Elbow Surgeons score was 76 ± 21. The VAS score decreased from 6.3 ± 1.1 to 1.8 ± 2 ($P < .001$). Abduction strength increased from 0.4 ± 0.4 kg to 3.6 ± 2.2 kg ($P < .001$). The acromiohumeral interval decreased from 7.9 ± 2.6 mm to 5.1 ± 2.2 mm, and arthropathy worsened from Hamada-Fukuda stage 1.4 to stage 2.1. The rate of conversion to a reverse prosthesis was 6%.

\textbf{Conclusion:} LDT represents a reliable and reproducible treatment option with good clinical midterm results after surgical treatment. Sex, genesis, preoperative presence of an external rotation lag sign, and previous surgical procedures do not affect the overall clinical outcome.

Institutional review board approval was received from the University of Mannheim/Heidelberg (study No. 2015-556N-MA) prior to the study.

*Reprint requests: Mohamed Moursy, MD, Department of Traumatology and Orthopaedic Surgery, University Hospital Salzburg, Müllner Hauptstraße 48, A-5020 Salzburg, Austria.
E-mail address: m.moursy@gmail.com (M. Moursy).

1058-2746/$ - see front matter © 2019 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.
https://doi.org/10.1016/j.jse.2019.03.028
The management of irreparable posterosuperior rotator cuff tears (IPSRCTs) in young active individuals is challenging. On the one hand, these individuals demand sustained pain relief, but on the other hand, they require strength to be regained for active function. Arthroscopic débridement alone or in combination with long head of the biceps tenotomy can achieve pain control but fail to restore shoulder function; in addition, postoperative results deteriorate with time.33 Furthermore, reverse shoulder arthroplasty is not an option in young active patients.17 Therefore, tendon transfers involving the latissimus dorsi (LD) muscle with or without the teres major (TM) muscle have evolved as a suitable treatment option; essentially, 3 different methods are described in the literature. L’Episcopo24 described the first tendon transfer for the shoulder joint in 1934. In a case of loss of abduction and external rotation due to an obstetric brachial plexus palsy, a combined transfer of the TM and LD muscles was performed. An isolated latissimus dorsi transfer (LDT) was first described by Gilbert and Tassin13 in 1984 for obstetric brachial plexus palsy in patients with suprascalpular nerve palsy. Considering massive posterosuperior rotator cuff tears as a similar pathology, Gerber et al12 used the concept of LDT to restore the function of external rotation in abduction in massive rotator cuff tears. Through a 2-incision technique, the LD is transferred to the insertion of the supraspinatus muscle and sutured to the remaining rotator cuff stump as well as the subscapularis muscle.12 The third method was described by Herzberg et al19 and involves LDT to the infraspinatus footprint through a single-incision technique.31 Since the first description of LDT for the management of IPSRCTs by Gerber et al, LDT with or without TM transfer has been described by multiple authors with different techniques and has become a commonly performed procedure in active individuals with IPSRCTs.1,3,6,9,10,14,15,18,20,21,23,27,29,34,36

Various studies have focused on the identification of variables affecting the outcome of LDT. First, the status of the remaining rotator cuff has been reported to be an important factor influencing the outcome as an irreparable subscapularis tear results in a poor outcome after LDT.3,10,35 Second, fatty infiltration of the teres minor muscle greater than Goutallier grade 2 has been found to have a negative impact on the outcome of LDT.3,11 It is interesting to note that a tear of the teres minor tendon does not affect the postoperative outcome.3

Regarding the relevant surgical anatomy, the LD muscle originates from the sixth thoracic vertebra and thoracolumbar fascia and inserts in the humeral shaft between the pectoralis major and TM. The mean length of the tendon is 5.2 cm; width, 2.9 cm; and thickness, 1 mm. After tendon transfer, the superior part of the muscle is under increased stress as the increase in length needed to reach the greater tuberosity is 6.8 cm. The neurovascular bundle enters the muscle 9.2 cm from the insertion. The potential excursion of the LD is 33.9 cm; this muscle is the longest in the shoulder girdle and is most suited for transfer.4,19 The TM, on the other hand, is a shorter muscle with a potential excursion of 14.9 cm; its superior edge may need to undergo lengthening by up to 47% for insertion into the greater tuberosity. The neurovascular bundle of the TM enters its medial half.

Materials and methods

In this retrospective case series, 106 patients aged 38 to 77 years who had undergone LDT between 2003 and 2013 were initially included. All patients underwent magnetic resonance imaging (MRI) of the affected shoulder for diagnosis. After failed conservative treatment with extensive physiotherapy for at least 6 months, LDT was indicated. The muscle transfers were performed in individuals with IPSRCTs who presented with (1) stage 3 fatty infiltration of the supraspinatus tendon according to Thomazew et al.32 (2) difficulty in tendon approximation to the greater tuberosity, and (3) stage 3 retraction of the supraspinatus tendon as described by Patte.30 If the patients reported an adequate trauma in the past 3 months resulting in notable deterioration of their shoulder function and the MRI scan showed an IPSRCT with signs of a partially traumatic genesis such as hematoma or tendon kinking, they were diagnosed with an acute-on-chronic IPSRCT. Patients with glenohumeral arthritis Hamada-Fukuda stage > 2, an irreparable subscapularis tear, an inability to comply with the postoperative rehabilitation protocol, an incapability to stabilize the arm at 90° of abduction with the elbow fully flexed as well as those in whom there was a dynamic anterosuperior subluxation of the humeral head on resisted abduction, were excluded from the study. After the exclusion criteria were applied, 79 patients were included in the study, of whom 67 were available for follow-up at an average of 54 ± 28 months after surgery. Of these patients, 39 were operated on according to the Herzberg technique and 28 were operated on by the L’Episcopo technique. No randomization was involved regarding the technique performed in the patient group. All patients were operated on by the same surgeon. Two
different techniques were used as the surgeon’s preference changed over time. Patient-specific data are outlined in Table I.

Clinical and radiologic evaluation

For follow-up examination, patients were asked to grade their pain on a visual analog scale (VAS). Active range of motion was measured with a goniometer to evaluate elevation, abduction, and external rotation of the elbow at the side. The overall functional outcome was assessed using the Constant score (CS) and American Shoulder and Elbow Surgeons (ASES) score as shoulder-specific measures. In addition, the Subjective Shoulder Value (SSV) was used as a patient-focused outcome tool. The patients were clinically assessed preoperatively and postoperatively with the CS; the SSV and ASES score were only assessed postoperatively.

Radiographic evaluation was carried out with conventional scapular anteroposterior and axillary radiographs that were evaluated according to the Hamada-Fukuda classification. Superior migration of the humeral head was quantified in the subacromial space using the acromiohumeral interval and in the glenohumeral articulation by the Maloney line.

Surgical technique

A diagnostic arthroscopy was first performed in all patients, and arthroscopic long head of the biceps tenotomy was performed. Acromioplasty was performed if indicated.

Modified Herzberg technique

LDT was performed with the patient in the lateral decubitus or prone position through an incision starting below the posterolateral corner of the acromion following the triceps for 6 to 8 cm. The LD and TM tendons were identified and sharply dissected from the humerus. When separation of the 2 tendons was not possible, a combined transfer was performed. A bony trough was prepared at the insertion of the infraspinatus, and the tendons were fixed with 4 FiberWire sutures (Arthrex, Naples, FL, USA) with modified Mason-Allen stitches. The crucial technical steps of this technique are illustrated in Figure 1.

L’Episcopo technique

With the patient in the lateral decubitus position, the deltoid muscle was elevated through an angled incision from the posterior border of the deltoid to the axillary fold. The quadrangular space with the axillary nerve was identified. Afterward, the LD and TM tendons were identified and dissected from the humerus while the radial nerve was being protected. After release of the attachments, the tendon or tendons were sutured with 2 suture anchors to the lateral aspect of the proximal humerus.

Postoperative protocol

Postoperatively, the shoulder was immobilized in 30° of external rotation and 45° of abduction. After 4 weeks, active exercises, with avoidance of movements provoking pain, were begun in all planes. After 12 weeks, full shoulder motion was permitted and the patient was allowed to return to light manual work and sports activities.

Statistical analysis

Statistical analysis was performed with SPSS software (version 22; IBM, Armonk, NY, USA) using the independent-samples Mann-Whitney U test and the Kruskal-Wallis test. Quantitative variables were described by means, standard deviations, minimums, and maximums. Normal distributions were tested by the Shapiro-Wilk test and confirmed graphically by a histogram. To determine prognostic factors for the functional outcome, we tested correlations between the VAS score, SSV, and CS and the following parameters: sex, previous surgical procedures before muscle transfer, preoperative external rotation lag sign, surgical
technique (Herzberg vs. L’Episcopo), and genesis (traumatic vs. degenerative).

Results

The mean duration of follow-up was 54.2 ± 28.2 months. The preoperative CS was 24 ± 6 points and improved to 68 ± 17 points at follow-up (P < .001); the age- and sex-adapted CS increased from 31% ± 9% to 90% ± 23% (P < .001). Active forward flexion increased from 83° ± 47° to 144° ± 35° postoperatively; similarly, abduction increased from 69° ± 33° to 134° ± 42°, and external rotation increased from 24° ± 18° to 35° ± 21°. Postoperatively, the SSV was 69% ± 19% and the ASES score was 76 ± 21. The VAS score decreased from 6.3 ± 1.1 to 1.8 ± 2 (P < .001). Strength in 90° of abduction increased from 0.4 ± 0.4 kg to 3.6 ± 2.2 kg at final follow-up (P < .001). Regarding preoperative and postoperative limitations on occupations and sports activity, patients reported an increase from 1.02 (indicating up to 25% ability to work) to 3.02 (indicating >75% ability to work) out of 4 points concerning their occupation and an increase from 0.88 (indicating severe limitation) to 3.13 (indicating mild limitation) out of 4 points concerning their sports activity. The acromiohumeral interval decreased from 7.9 ± 2.6 mm to 5.1 ± 2.2 mm, and arthropathy worsened from Hamada-Fukuda stage 1.4 to stage 2.1. The revision rate with conversion to a reverse prosthesis was 6% (4 patients). It is interesting to note that all 4 patients had undergone LDT by the L’Episcopo technique and preoperatively had presented with Hamada-Fukuda stage 2 glenohumeral arthritis. The reason for conversion was ongoing shoulder pain and severe functional impairment in addition to radiographic progression of glenohumeral arthritis to Hamada-Fukuda stage 3 or 4. All 4 patients required conversion in the first 2 years (range, 8-22 months) after LDT. However, we assume that the progression of osteoarthritis is multifactorial and is not related to the performed procedure. No neurovascular complications or postoperative infections occurred. Preoperative and postoperative parameters are shown in Table I.

In addition, we assessed the influence of the surgical technique (L’Episcopo vs. Herzberg), previous surgical procedures before LDT, and preoperative presence of an

Figure 1 Latissimus dorsi transfer with modified Herzberg technique. The incision is made below the posterolateral corner of the acromion following the triceps for 6 to 8 cm. The teres major (a) is identified first (a), followed by the latissimus dorsi tendon (c). (b) The radial nerve (+) should be visualized. When separation of the 2 tendons is not possible, a combined transfer should be performed. Two suture anchors are placed at the insertion of the infraspinatus (d) (d), and the tendons are fixed with modified Mason-Allen stitches (e). After skin closure (f), the shoulder is immobilized with an abduction pillow.
external rotation lag sign of 20° or greater, as well as genesis of the IPSRCT (traumatic vs. degenerative). However, the assessment showed that none of these factors had any significant impact on the outcome (Table II). Table III compares our findings with published data regarding postoperative results after LDT.

Table II Outcome according to sex, surgical technique, etiology, previous surgical procedures, and presence of preoperative external rotation lag sign

<table>
<thead>
<tr>
<th>Factor</th>
<th>n</th>
<th>Constant score, points</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>41</td>
<td>69</td>
<td>NS</td>
</tr>
<tr>
<td>Female</td>
<td>26</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Technique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herzberg</td>
<td>35</td>
<td>70</td>
<td>NS</td>
</tr>
<tr>
<td>L’Episcopo</td>
<td>32</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Previous surgical procedures</td>
<td>≥1</td>
<td>34</td>
<td>69</td>
</tr>
<tr>
<td>before LDT</td>
<td>None</td>
<td>33</td>
<td>67</td>
</tr>
<tr>
<td>Etiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td>39</td>
<td>70</td>
<td>NS</td>
</tr>
<tr>
<td>Degenerative</td>
<td>28</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>External rotation lag sign</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>56</td>
<td>68</td>
<td>NS</td>
</tr>
<tr>
<td>Negative</td>
<td>11</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

NS, not significant; LDT, latissimus dorsi transfer.

Discussion

Multiple studies unanimously showed good clinical results after LDT for IPSRCTs. Results from previous studies performed in this regard. Only limited data are available regarding the outcome of nonoperative treatment of IPSRCTs. Levy et al. prospectively assessed 17 patients with radiologically confirmed, degenerative, massive rotator cuff tears who were treated with an anterior deltoid rehabilitation program. The CS increased from 26 to 60 points at a minimum of 9 months after treatment. Agout et al. reported an improvement in the CS from 41 to 57 points after 12 months in a prospective multicenter study of 68 patients with conservatively treated IPSRCTs. Considering our data, conservative treatment of IPSRCTs seems inferior to treatment with LDT.

Nevertheless, after LDT, completely normal shoulder function cannot be expected. In a systematic review of clinical and structural outcomes after arthroscopic rotator cuff repair, Millett et al demonstrated that the average CS lies between 75 and 86 points. Therefore, considering our data, compared with “normal” rotator cuff repairs, the CS after LDT is inferior. Compared with the data published by Cole et al. with a 2-year follow-up after arthroscopic rotator cuff repair, the abduction force particularly seems to be compromised after LDT when taking into account our data (3.6 kg in our study vs. 5.9 kg in their study).

Sex

Only Iannotti et al. have studied the effect of sex on the outcome after LDT. In a cohort of 14 patients evaluated postoperatively by the Penn Shoulder Score, 5 patients were dissatisfied with the outcome, of whom 4 were women. Thus, Iannotti et al concluded that female sex is related to inferior clinical results; however, given the small cohort and many different factors that could possibly affect the outcome, this might not be true. In our study, the mean CS was minimally higher in men than in women, but these differences were not statistically significant (Table II).

Surgical technique

Moursy and Lehmann observed better postoperative CSs and strength in patients operated on by the Herzberg technique compared with the L’Episcopo technique; however, the observed differences were not statistically significant. In our study, we could confirm these results with a larger patient population. An interesting finding was that all 4 patients who underwent humeral head replacement after LDT had been treated with tendon transfer by the L’Episcopo technique. Nevertheless, a causal relation to the progression of osteoarthritis remains doubtful, as there are too many biased factors.

Previous surgical procedures

Irlenbusch et al showed a tendency toward inferior clinical results in individuals who underwent previous surgical procedures. Less pain relief was also noted in this group; however, the differences were not statistically significant. A long-term study by El-Azab et al. showed similar results with 2 of the 3 failures of muscle transfer belonging to the revision group. Our cohort demonstrated similar results with the CS being lower in the revision group (67 points) than in the primary group (69 points). However, the observation was not statistically significant. All in all, primary LDT seems not to be superior to LDT after previous surgical procedures.

Tear genesis

To date, no data are available on whether the etiology of the tear affects the outcome after LDT. In our study, we observed that the CS increased from 34 points to 70 points in the traumatic group compared with an increase from 36 points to 68 points at final follow-up in patients with...
Nevertheless, the differences were not statistically significant.

Previous studies have shown that fatty atrophy of the TM with Goutallier grade 3 or 4 results in unfavorable outcomes. Costouros et al observed that fatty infiltration was more important than tendon integrity in prognosticating the outcome. Therefore, in our cohort, we examined the presence of an external rotation lag sign of 20° or greater on the preoperative clinical examination. However, only minimal differences in the overall outcome could be observed (average CS of 68 points in patients with an external rotation lag sign vs. 73 points in those without it).

An interesting finding was that postoperative external rotation was significantly superior in patients without a preoperative external rotation lag sign (54° vs. 32°, P = .007).

Limitations

There are several limitations to this study. As this was a retrospective study, no preceding power analysis was performed and a potential type II error might have occurred. However, postoperative MRI was not performed to evaluate the healing and integrity of the transferred tendon.

Conclusion

For active young patients with ISRCTs, to date only limited treatment options are available. LDT represents a reliable and reproducible treatment option with good clinical midterm to long-term results. Nevertheless, differences in the overall outcome could be obtained in patients with a preoperative external rotation lag sign of 20° or greater. Therefore, in our cohort, we examined the presence of an external rotation lag sign of 20° or greater on the preoperative clinical examination. However, only minimal differences in the overall outcome could be observed. Clinical midterm to long-term results after surgical treatment still not statistically significant.

References

2. Nové-Josserand et al. Preoperative presence of external rotation lag sign in patients with ISRCTs. Nevertheless, the differences were not statistically significant.

